EN CN
search

全生物降解材料聚乙烯醇(PVA)


  塑料包装材料质轻、强度高,可制成适应性强的多功能包装材料,因此人们对塑料包装的依赖愈来愈大。但塑料包装物的大 量一次性使用也产生大量废弃物,由于这些废弃物量大、分散、收集再生利用成本高昂,而且其原料大部分属惰性材料,很难在自然环境中降解等原因,使得它们对 环境造成的污染和生态平衡的破坏不断积累,已经成为二十一世纪社会与生态的噩梦。

  因此解决塑料的自然降解,使塑料进入生态良性循环,解除其对自然与环境的破坏,成为各国科学家与企业开发热点。

  降解塑料的研究开发可追溯到20世纪70年代,当时在美国开展了光降解塑料的研究。20世纪80年代又研究开发了淀粉填充型“生物降解塑料”,其曾风靡一时。但经过几年应用实践证明,这种材料没有获得令人信服的生物降解效果。20世纪90年 代以来降解塑料技术有了较大进展,并开发了光生物降解塑料、光热降解塑料、淀粉共混型降解塑料、水溶性降解塑料、完全生物降解塑料等许多新品种。近年来, 生物降解塑料特别是生物物质塑料,完全可以融入自然循环,是最有社会与市场前景的降解材料,已在业界成为共识,并有成果不断涌现。

  降解塑料由于它具有易降解功能,只适于特定的应用领域和某些塑料产品,如一次性包装材料、地膜、医用卫生材料等。这些产品受污染严重,不易回收,或即使强制收集利用价值不大,效益甚微或无效益。

  生物降解塑料(BDP)是指在自然界中能被酶或微生物(如细菌、霉菌和藻类)及其分泌物分解利用(包括高分子化合物及其配合物)的材料。

  生物降解塑料的降解机理,即生物降解塑料被细菌、霉菌等作用消化吸收的过程,大致有3种方式:

  生物的物理作用——由生物细胞的生长而使物质发生机械性毁坏;

  生物的化学作用——微生物对聚合物的作用而产生新的物质;

  酶的直接作用——微生物侵蚀部分导致塑料分解或氧化崩裂。

  BDP是高分子化学结构等分子层次的研究。其研究无论从地球环境保护的实际角度,或从开发取之不尽的可再生资源角度,还是从合成高分子的学术研究角度都具有重要的意义。但对生物降解塑料的研究在一开始就遇到了困难,尽管如此,作为21世纪高新技术,欧美日等发达国家仍投入了大量人力、资金进行研究。

  BDP的合成方法主要有微生物产生法、化学合成法(掺混法)和天然高分子改性法等三大类。各类BDP虽均具有良好的生物降解性能,但近年来从原料来源和可持续发展的概念,又分为生物基聚合物和生物降解聚合物两大类。

  生物基聚合物是由可再生资源(如淀粉、秸秆等)、二氧化碳、生物聚合物(核酸、多糖、聚酯、聚异戊二烯 类、多酚及他们的衍生物、混合物和复合物等)为原料制得。开发生物基聚合物的出发点是由于目前大量使用的石油资源有限,而可再生资源和二氧化碳等来源丰 富、价廉,可满足可持续发展的要求。即其设计主要出发点是基于可再生资源的可持续发展为目的。

  而生物降解聚合物是指在一定环境条件下,可被微生物作用分解成为二氧化碳、水及其所含元素的矿化盐和新的生物质的一类聚合物。由于聚合物被微生物作为营养源而逐步消解导致质量损失、力学性能下降等,其研发的主要出发点是治理难以回收利用的塑料废弃物的环境污染问题。

  目前已有工业化产品的生物基聚合主要有,聚烃基脂肪酸酯类、聚乳酸-PLA、脂肪族聚碳酸酯、热塑性淀粉等。生物降解聚合物主要有,聚己内酯PCL、脂肪族聚PBS、脂肪族/芳香族共聚酯化学合成PLA以及它们与天然高分子(淀粉、纤维素)的共混物等。